


SEALED MAINTENANCE FREE
VRLA BATTERIES
FOR
TELECOM APPLICATION

Introduction to EXIDE —

- India's number one storage battery manufacturing company, having one of the largest range of batteries in the world covering the entire gamut of applications from motor cycles to large commercial vehicles; from small UPS batteries to gigantic Submarine batteries
- Market leader in battery business for more than half a century
- Largest network in India with 4 Regional Offices, 24 Branch Offices & 30 Power Centres
- 8 factories strategically located across the country, with each factory specializing on specific range of products
- Full fledged in-house R&D facility in Kolkata backed by long term strategic and technical collaborations with other leading global manufacturers like
 - Shin Kobe Electric Machinary Co., Japan
 - The Furukawa battery Co., Japan
 - ISO 9001 certified organization
- ISO 14001 certified Eco friendly manufacturing process
- Most reliable power back up provider for Telecommunication Applications for both mobile and fixed networks

The Technical Edge of SMF URLA Battery of Exide -

HASSLE FREE HANDLING & EASY INSTALLATION

- No water topping up required ever resulting in saving of hundreds of litres of distilled water and manpower required for topping up throughout life of the battery.
- Factory Charged & Ready to use and hence no delay between receipt and use resulting in instant power source.
- Modular design ensures easy handling and Installation hence does not require any specially trained manpower for installation.
- Sealed with no free acid.

SPACE ECONOMY

 Sealed construction allows use in any orientation without leakage / spillage, without affecting the performance and hence resulting in saving of floor space.

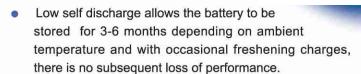
ECO FRIENDLY

- Superior Cadmium free grid alloy
- The gas recombination technology cycle effectively nullifies generation of gas during normal use resulting in no emission of corrosive fumes under normal operative conditions and hence no elaborate air exhaust system is required.

SUPERIOR PERFORMANCE

- Enhanced plate length for high power density
- Excellent recovery from deep discharge
- Low self discharge

SAFETY


- Better Thermal Management in the system
- Resistant to thermal runaway due to lead calcium
- Flame Arrestor fitted safety valve.

LIFE

- Service life comparable with the best of the international
- Designed life is 20 yrs at 27°C under ideal float condition
- 4000 cycles at 20 % DOD
- 1800 cycles at 50 % DOD
- 1400 cycles at 80 % DOD

LOW SELF DISCHARGE

Antimony free alloy and hence self discharge less than 0.5% per week of C₁₀ capacity at 27°C

PERFORMANCE CONFORMING TO:

: GR/BAT-01/03.MAR 2004 with latest amendment

JIS : C 8704 - 2: 1999

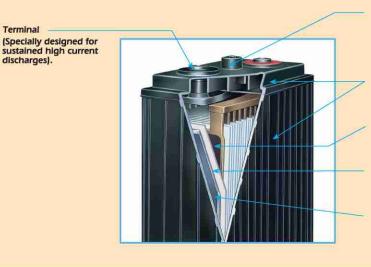
IEC : 60896 - 21 & 22

ANSI: T1 330 (US specification for Telecom battery)

RDSO: IRS S93-96 with latest amendment

Float voltage settings

Recommended Float Voltages


AMBIENT TEMP (°C)	RECOMMENDED FLOAT VOLTAGE PER CELL (VOLT)	MAXIMUM CHARGING CURRENT (AMPERE)
-5 to 14	2.27+/-0.02	0.15C
15 to 24	2.25+/-0.02	0.15C
25 to 34	2.23+/-0.02	0.15C
35 to 40	2.20+/-0.02	0.15C

C: Nominal 10 hr. capacity of the battery at 27°C

Exploded diagram of cell with basic reaction diagram

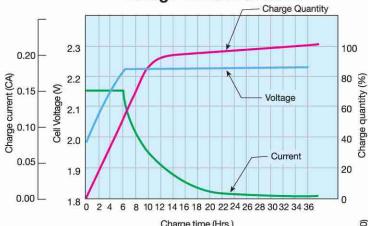
Construction

discharges).

Flame Arresting Vent Plug housing the safety valve (Explosion-proof, self resealing and pressure regulating).

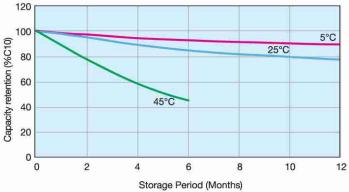
Container & Lid made of High grade polypropelene Co-polymer (PPCP).

Positive Plate (Lead calcium tin alloy grid for low corrosion & low self discharge rates).

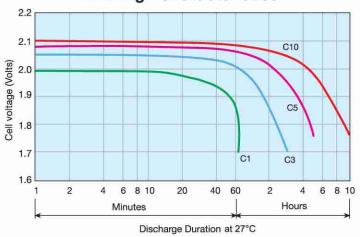

(Double layer, High Density nonwoven Absorptive Glass Mat with excellent porosity).

Negative Plate (Lead calcium tin alloy grid providing low corrosion & maintenance free characteristics).

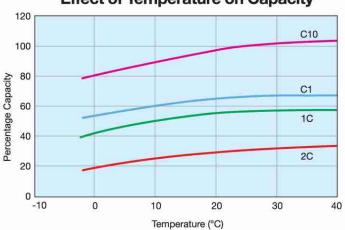
Characteristics of URLA Batteries


Charge Characteristics

Charge time (Hrs.)


Temperature : 27°C Discharge : 100% C10 rate 2.23 vpc 0.15C Amps Recharge

Capacity Retention Characteristics



· Supplementary charge is recommended before capacity retention ratio drops less than 80%.

Discharge Characteristics

Effect of Temperature on Capacity

Technical Specifications

Table 1a: NEPST Module Dimension

Battery	Capacity	Module	Mo	Weight		
type	@ 10 hr/ 1.75V	nominal voltage	L(mm) +/- 5	D(mm) +/- 5	H(mm) +/- 5	(Kg) +/- 5%
NEPST	200	12	703	423	268	87
NEPST	240	12	703	423	268	96
NEPST	280	12	703	423	268	108
NEPST	300	12	682	424	292	114
NEPST	400	8	733	415	236	118

Table 1b: MST / NMST Module Dimension

Battery	Capacity	Module	Mo	Module dimension					
type	@ 10 hr/ 1.75V	nominal voltage	L(mm) +/- 5	D(mm) +/- 5	H(mm) +/- 5	(Kg) +/- 5%			
NMST	500	8	789	540	255	148			
NMST	600	8	789	540	255	166			
NMST	800	4	462	540	363	122			
NMST	1000	4	462	540	363	145			
NMST	1250	4	436	540	511	179			
NMST	1500	4	436	540	511	200			
NMST	2000	2	436	540	363	145			
NMST	2500	2	436	540	511	179			
NMST	3000	2	436	540	511	200			
NMST	4000	2	872	540	363	290			
NMST	5000	2	872	540	511	358			
NMST	6000	2	872	540	511	400			

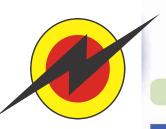


Table 2a: NEPST 48V System Configuration & Overall Dimension

Battery	Capacity	Stacking	Ove	Overall dimension					
type	@ 10 hr/ 1.75V		L(mm) +/- 5	D(mm) +/- 5	H(mm) +/- 10	(Kg) +/- 5%			
NEPST	200	1 stack, 4 mod /stack	703	423	1122	352			
NEPST	240	1 stack, 4 mod /stack	703	423	1122	388			
NEPST	280	1 stack, 4mod /stack	703	423	1122	436			
NEPST	300	1 stack, 4 mod /stack	682	424	1218	460			
NEPST	400	1 stack, 4 mod /stack	733	415	1541	710			

Table 2b: MST / NMST 48V System Configuration & Overall Dimension

Battery	Capacity	Stacking	Over	all dimens	ion	Weight
type	@ 10 hr/ 1.75V		L(mm) +/- 10	D(mm) +/- 10	H(mm) +/- 10	(Kg) +/- 5%
NMST	500	1 Stack, 6mod /stack	789	540	1655	893
NMST	600	1 Stack, 6mod /stack	789	540	1655	1002
NMST	800	3 Stack, 4 mod / stack	1386	540	1577	1479
NMST	1000	3 Stack, 4 mod / stack	1386	540	1577	1635
NMST	1250	4 Stack, 3 mod / stack	1744	540	1658	2194
NMST	1500	4 Stack, 3 mod / stack	1744	540	1658	2446
NMST	2000	6 Stack, 4 mod / stack	2616	540	1573	3550
NMST	2500	6 Stack, 4 mod/ stack	2616	540	2169	4365
NMST	3000	8 Stack, 3 mod / stack	3488	540	1658	4892
NMST	4000	12 Stack, 4 mod / stack (Linear)	5232	540	1573	7100
NMST	4000	12 Stack, 4 mod / stack (Back to Back)	2616	1240	1573	7100
NMST	5000	12 Stack, 4 mod / stack (Linear)	5232	540	2169	8730
NMST	5000	12 Stack, 4 mod / stack (Back to Back)	2616	1240	2169	8730
NMST	6000	16 Stack, 3 mod / stack (Linear)	6976	540	1658	9784

Table 3a: NEPST 24 V System Configuration & Overall Dimension

Battery	Capacity	Stacking	Ove	Overall dimension					
type	@ 10 hr/ 1.75V		L(mm) +/- 5	D(mm) +/- 5	H(mm) +/- 5	(Kg) +/- 5%			
NEPST	200	1 stack, 2 mod /stack	703	423	586	180			
NEPST	240	1 stack, 2 mod /stack	703	423	586	200			
NEPST	280	1 stack, 2 mod /stack	703	423	586	220			
NEPST	300	1 stack, 2 mod /stack	682	424	634	235			
NEPST	400	1 stack, 2 mod /stack	733	415	833	364			

Table 3b: MST & NMST 24V System Configuration & Overall Dimension

Battery	Capacity	Stacking	Over	all dimens	ion	Weight
type	@ 10 hr/ 1.75V		L(mm) +/- 10	D(mm) +/- 10	H(mm) +/- 10	(Kg) +/- 5%
NMST	500	1 Stack, 3mod /stack	789	540	828	447
NMST	600	1 Stack, 3mod /stack	789	540	828	501
NMST	800	3 Stack, 2 mod / stack	1386	540	789	740
NMST	1000	3 Stack, 2 mod / stack	1386	540	789	818
NMST	1250	2 Stack, 3 mod / stack	872	540	1658	1097
NMST	1500	2 Stack, 3 mod / stack	872	540	1658	1223
NMST	2000	3 Stack, 4 mod / stack	1308	540	1573	1775
NMST	2500	3 Stack, 4 mod / stack	1308	540	2169	2194
NMST	3000	4 Stack, 3 mod / stack	1744	540	1658	2446
NMST	4000	6 Stack, 4 mod / stack (Linear)	2616	540	1573	3550
NMST	5000	6 Stack, 4 mod / stack (Linear)	2616	540	2169	4365
NMST	6000	8 Stack, 3 mod / stack (Linear)	3488	540	1658	4892

Discharge Current in Amps at 27°C

Table 4a: NEPST Range

	АН	ECV	30min	60min	90min	2hrs	3hrs	4hrs	5hrs	6hrs	8hrs	10hrs
NEPST	200	1.80	118	91	76	66	49	40	34	29	24	20
		1.75	148	108	85	71	53	43	35	31	25	21
		1.70	154	111	87	73	54	43	36	32	25	21
NEPST	240	1.80	141	109	91	79	59	48	40	35	28	24
		1.75	178	129	102	85	63	51	42	37	30	25
		1.70	185	133	105	87	65	52	44	38	30	26
NEPST	280	1.80	165	127	106	92	68	56	47	41	33	28
		1.75	207	151	119	99	74	60	49	43	35	29
		1.70	215	156	122	102	75	61	51	44	35	30
NEPST	300	1.80	176	136	114	98	73	60	50	44	36	30
		1.75	222	161	127	106	79	64	53	47	37	31
		1.70	231	167	131	109	81	65	55	48	38	32
NEPST	320	1.80	188	145	122	105	78	64	54	47	38	32
		1.75	237	172	136	113	84	68	56	50	40	33
		1.70	246	178	140	116	86	70	58	51	41	34

Discharge Current in Amps at 27°C

Table 4b: MST & NMST Range

	АН	ECV	30min	60min	90min	2hrs	3hrs	4hrs	5hrs	6hrs	8hrs	10hrs
MST	400	1.80 1.75 1.70	235 296 308	182 215 222	152 169 175	131 142 145	98 105 108	80 85 87	67 70 73	59 62 63	47 50 51	40 41 43
NMST	500	1.80 1.75 1.70	294 370 385	227 269 278	190 212 218	164 177 182	122 132 134	100 106 109	84 88 91	74 78 79	59 62 63	50 52 53
NMST	600	1.80 1.75 1.70	353 444 462	273 323 333	228 254 262	197 213 218	146 158 161	120 128 130	101 106 109	88 93 95	71 74 76	60 62 64
NMST	800	1.80 1.75 1.70	471 593 615	364 430 444	304 339 349	262 284 291	195 211 215	160 170 174	134 141 145	118 124 127	95 99 101	80 83 85
NMST	1000	1.80 1.75 1.70	588 741 769	455 538 556	380 424 437	328 355 364	244 263 269	200 213 217	168 176 182	147 155 159	118 124 127	100 104 106
NMST	1250	1.80 1.75 1.70	735 926 962	568 672 694	475 530 546	410 443 455	305 329 336	250 266 272	210 220 227	184 194 198	148 155 158	125 130 133
NMST	1500	1.80 1.75 1.70	882 1111 1154	682 806 833	570 636 655	492 532 545	366 395 403	300 319 326	252 264 273	221 233 238	178 186 190	150 155 160
NMST	2000	1.80 1.75 1.70	1176 1481 1538	909 1075 1111	760 847 873	656 709 727	488 526 538	400 426 435	336 352 364	294 310 317	237 248 253	200 207 213
NMST	2500	1.80 1.75 1.70	1471 1852 1923	1136 1344 1389	951 1059 1092	820 887 909	610 658 672	500 532 543	420 441 455	368 388 397	296 310 316	250 259 266
NMST	3000	1.80 1.75 1.70	1765 2222 2308	1364 1613 1667	1141 1271 1310	984 1064 1091	732 789 806	600 638 652	504 529 545	441 465 476	355 372 380	300 311 319
NMST	4000	1.80 1.75 1.70	2353 2963 3077	1818 2151 2222	1521 1695 1747	1311 1418 1455	976 1053 1075	800 851 870	672 705 727	588 620 635	473 495 506	400 415 426
NMST	5000	1.80 1.75 1.70	2941 3704 3846	2273 2688 2778	1901 2119 2183	1639 1773 1818	1220 1316 1344	1000 1064 1087	840 881 909	735 775 794	592 619 633	500 518 532
NMST	6000	1.80 1.75 1.70	3529 4444 4615	2727 3226 3333	2281 2542 2620	1967 2128 2182	1463 1579 1613	1200 1277 1304	1008 1057 1091	882 930 952	710 743 759	600 622 638

Additional Information Regarding Exide Powersafe

Heat Dissipation:

A VRLA battery under normal float condition shall dissipate heat into the atmosphere. For the overall heat load calculation, taking into account a worst case operation, the rate of heat dissipation may be taken as 0.45 Watts/100 Ah C₁₀ capacity/cell.

Hydrogen Evolution:

Hydrogen gas evolved by a lead acid battery may be estimated from the following formula: Hydrogen gas evolved per hour = 0.45 X 10⁻³ x n x I x C m³ at N.T.P.

where, n = number of 2V cells

I = Float current, 0.2 A/100 Ah for a VRLA cell

C = C₁₀ capacity of Cell

To design for the ventilation (air flow) requirement so that the hydrogen percentage in the air is always below 4% (lower explosive limit), the air flow rate may be estimated as:

 $Q = d \times s \times 0.45 \times 10^{-3} \times n \times l \times C m^{3}/hr$

Where, d = dilution ratio (100 - 4)/4 = 24S = factor of safety, e.g. 5

For a VRLA, the above may be simplified as: $Q = 0.0108 \times n \times C$

Ripple Current:

VRLA batteries should be charged by pure D.C. source only. For optimum life the A.C. ripple content should not exceed 5A per 100 Ah C₁₀ capacity.

Overdischarge:

Compared to the alkaline battery, the sealed lead acid battery is very sensitive to overdischarge resulting in failure to recover to normal capacity i.e reduction in capacity and shortened service life. Overdischarge also occurs by leaving the battery in a discharged state. The Exide powersafe VRLA type sealed lead acid battery overcomes this due to its alloy composition. If this battery is overdischarged and left standing in a discharged state for a few days, it can recover its original capacity when charged. However, it is recommended to avoid overdischarge situations as much as possible. Also check the following points when charging

Precautions:

- (1) Always perform constant voltage charging with 2.35 V/cell or constant current charging with 0.05 CA. The charge voltage of 2.25 V/cell may not be enough to recover to the capacity above. In this case repeat charge and discharge two or three times.
- (2) The original capacity can be recovered after two or three consecutive charge-discharge cycles. Beyond this limit, the battery may not recover its original capacity.

FAQ's

What is a URLA battery?

VRLA stands for Valve Regulated Lead Acid battery wherein a valve is used to vent out the excess evolved Hydrogen. Concept of a VRLA battery is evolved, to make the practice of topping up obsolete. Exide Powersafe employs Absorptive Glass Matt (AGM) separator technology in the VRLA batteries.

At any point of time VRLA battery should not be topped up with water. Conversely, any battery that demands water after cycling cannot be a VRLA battery.

What are the parameters on which capacity of a battery is declared?

Capacity of battery is declared with respect to rate of discharge, cut off voltage and temperature e.g. 1000 Ah @ C 10 to 1.75 End Cell Voltage (E.C.V) at 27°C means a discharge of 100 A (=1000Ah / 10h) from the battery for 10 hours at 27°C will result in end cell voltage of 1.75 V. 100 % capacity is obtained only during discharge at nominal rate of discharge. For higher rates, discharge curve / table to be referred.

When is the time to change a battery bank?

Capacity (Ah) given by a battery diminishes with age and when it reaches 80 % of the rated capacity, battery bank needs to be changed. In the above example, if a 1000 Ah battery bank reaches 1.75 Volt per cell at the 8th hour while discharging 100 Amperes, battery has reached it's end of life.

Which type of charger is recommended for Exide Powersafe URLA?

Constant Potential chargers with current limit facility (Constant Current Constant Potential type) chargers are to be used for charging VRLA batteries. Recharge current maximum limit to be set at 15 % of the rated capacity.

How does the alloy help in delivering better performance & What makes Exide Powersafe batteries give a better float performance?

Alloy used in plates plays a major role in terms of battery performance & life. The float current requirement is totally dependent on alloy composition. Various types of alloys are used in plates of VRLA battery. Exide Powersafe uses Lead Calcium Tin alloy in both positive & negative plates. It is technically established that this alloy requires minimum float current than all other types of alloys like lead antimony or cadmium. This gives Exide Powersafe VRLA batteries a clear edge over other makes in terms of performance & life of battery in float application.

What is the advantage of modular arrangement in URLA batteries?

Modules can be stacked one over the other and overall bank dimension can be adjusted to meet the site requirement both in terms of foot print and floor loading.

Why freshening charge is required in batteries even if the batteries are not discharged by external load?

A battery gets discharged on its own when kept in idle condition (Not connected to load). This phenomenon is called as self discharge which is governed by the grid alloy, ambient temperature and other factors. In order to compensate the charge lost in self discharge, batteries are to be given a freshening charge on a periodic basis. Batteries are always put on a float mode for the same reason, where the battery picks up the required charge to remain in a full charge condition.

Is there any requirement of a separate battery room for URLA batteries?

Immobilised electrolyte ensures that there is no free acid in the VRLA battery. TIG welding followed by epoxy resin sealing ensures double assurance against acid leakage. Oxygen recombination technology effectively nullifies generation of gas during normal use. Hence there is no need for a separate battery room with costly acid proof flooring and elaborate air exhaust system as in conventional flooded installations.